顾强强

发布时间:2024-11-05浏览次数:10

顾强强



 Email: guqq@ustc.tsg211.com


 研究方向:AI for Material Science、密度泛函理论、

                  紧束缚模型、非平衡格林函数、材料/器件模拟

 




个人简介: 顾强强,本科毕业于东南大学,2021年获北京大学凝聚态物理专业理学博士学位。此后继续在北京大学数学科学学院和大数据科学研究中心从事博士后研究,并担任北京科学智能研究院(AI for Science Institute, Beijing)的兼职研究员。2024年10月正式入职图书馆VIP人工智能与数据科学学院预聘副教授。工作致力于机器学习与计算材料模拟的交叉研究,发表SCI文章十余篇,其中一作/共一/通讯作者包含Nat. Commun., Sci. Bull., Phy. Rev. Lett, Natl. Sci. Rev., Adv. Mater., PNAS等。作为主要设计者与开发者,开发了DeePTB、TBSOC和DFTIO等开源软件。主持了中国博士后面上基金1项与JKW基础加强计划项目1项,作为技术骨干参与工信部2022其年高质量发展专项"材料和工艺设计多尺度仿真软件开发及应用"项目, 负责AI+NEGF输运模块开发。担任npj Computational Materials, Chemical Communications,ICLR等期刊/会议审稿人。


主要论著:

[1]Q. Gu†, Z. Zhouyin, S. K. Pandey, P. Zhang, L. Zhang, and W. E, Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy, Nat Commun 15, 6772 (2024).  (†Corresponding author)

[2]Z. Zhouyin, Z. Gan, S. K. Pandey, L. Zhang, and Q. Gu†, Learning Local Equivariant Representations for Quantum Operators, arXiv:2407.06053.

[3]H. Rong#, Q. Gu#, et al., Dominant charge density order in TaTe4, Phys. Rev. Lett. 133, 116403 (2024). (#Co-1st author)

[4] S. K. Pandey, S. Debnath, Z. Zhouyina, and Q. Gu†, Pitfalls of Exchange-Correlation Functionals in Descriptions of Magnetism: Cautionary Tale of the FeRh Alloy, arXiv:2401.12563 (2024).

 [5] B. Hu, Y. Peng, X. Liu, Q. Li, Q. Gu, M. J. Krogstad, R. Osborn, T. Honda, J. Feng, and Y. Li, Absence of magnetoelastic deformation in the spin-chain compound CuBr2, Phys. Rev. B 110, 115142 (2024).

[6] Q. Gu, S. K. Pandey, and Y. Lin, Computational Exploration of a Viable Route to Kitaev-Quantum Spin Liquid Phase in OsCl3, arXiv:2304.04257 (2023).  

[7] Q. Gu†, S. K. Pandey, and R. Tiwari, A computational method to estimate spin-orbital interaction strength in solid state systems, Computational Materials Science 221, 112090 (2023).

[8] S. K. Pandey, Q. Gu, Y. Lin, R. Tiwari, and J. Feng, Emergence of bond-dependent highly anisotropic magnetic interactions in Sr4RhO6: A theoretical study, Phys. Rev. B 107, 115119 (2023).

[9] Q. Gu, L. Zhang, and J. Feng, Neural network representation of electronic structure from ab initio molecular dynamics, Science Bulletin 67, 29 (2022).

[10] X. Zheng#, Q. Gu#, Y. Liu, B. Tong, J.-F. Zhang, C. Zhang, S. Jia, J. Feng, and R.-R. Du, Observation of 1D Fermi arc states in Weyl semimetal TaAs, National Science Review 9, nwab191 (2022).

[11] Z. Shi, Y. Cao, Q. Gu, and J. Feng, Worldline algorithm by oracle-guided variational autoregressive network, Phys. Rev. B 104, 094407 (2021).

[12] X. Zhang#, Q. Gu#, et al., Eightfold fermionic excitation in a charge density wave compound, Phys. Rev. B 102, 035125 (2020).

[13] H. Sun, Z. Shao, T. Luo, Q. Gu, Z. Zhang, S. Li, L. Liu, H. Gedeon, X. Zhang, Q. Bian, J. Feng, J. Wang and M. Pan. Discovery of an unconventional charge modulation on the surface of charge-density-wave material TaTe4, New J. Phys. 22, 083025 (2020).

[14] J. Ma, Q. Gu, Y. Liu, J. Lai, P. Yu, X. Zhuo, Z. Liu, J.-H. Chen, J. Feng, and D. Sun, Nonlinear photoresponse of type-II Weyl semimetals, Nat. Mater. 18, 476 (2019).

[15] Y. Li#, Q. Gu#, et al., Nontrivial superconductivity in topological MoTe2− xSx crystals, Proceedings of the National Academy of Sciences 115, 9503 (2018).

[16] Y. Liu#, Q. Gu#, et al., Raman Signatures of Broken Inversion Symmetry and In-Plane Anisotropy in Type-II Weyl Semimetal Candidate TaIrTe4, Advanced Materials 30, 1706402 (2018).

[17] J. Lai, X. Liu, J. Ma, Q. Wang, K. Zhang, X. Ren, Y. Liu, Q. Gu, X. Zhuo, W. Lu, Y. Wu, Y. Li, J. Feng, S. Zhou, J. Chen, and D. Sun. Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe2, Advanced Materials 30, 1707152 (2018).

[18] K. Zhang, C. Bao, Q. Gu, X. Ren, H. Zhang, K. Deng, Y. Wu, Y. Li, J. Feng, and S. Zhou, Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2, Nature Communications 7, 1 (2016).